

DAIDO STEEL GROUP Beyond the Special

<u>High Thermal Conductivity Powder Metal</u> DAP[™]-AM HTC45 and DAP[™]-AM HTC40

DAP[™]-AM series for 3D printing <u>D</u>aido <u>A</u>lloy <u>P</u>owder – for <u>A</u>dditive <u>M</u>anufacturing (<u>H</u>igh <u>T</u>hermal <u>C</u>onductivity) DAP[™]-AM HTC45 and DAP[™]-AM HTC40 are · · ·

A metal powders created for SLM 3D printing.

Spherical powders with excellent flowability to improve moldability.

Features

- •Gas atomized powder with spherical and flowable features as well as low oxygen contents.
- Reduce cracks during 3D printing by improving the powder composition.
- Enhanced cooling efficiency with improved thermal conductivity property, reduced thermal stress, and improved protection of cooling lines from heat checking and cracking.
- *1. Recommend 200°C (392F) for base plate temperature to prevent cracks during 3D printing.

Example of applications

• Inserts for die casting mold and injection mold for plastic

Chemical composition and range of hardness

DAP TM -AM	Equivalent Steel	Range of	Chemical Composition (mass%)				Application	
Series		hardness (HRC)	С	Si	Cr	Мо	V	
DAP [™] -AM HTC45	Type of H13	40~50	0.23	0.1	5	1.2	0.4	Die Casting Mold
DAP [™] -AM HTC40	Type of	35~45	0.13	0.1	5	1.2	0.4	Die Casting Mold Plastic Mold

DAP and HTC are Registered trademarks or Trademarks of Daido Steel Co., Ltd.

Typical Particle size

-53/+25

Characteristics

Hardness is reduced to a practical level, and cracks during 3D printing are prevented. Hardness can be adjusted by tempering*2 after 3D printing.

(*2 Tempering at 550° C (1022F) or higher is recommended to release residual stress.)

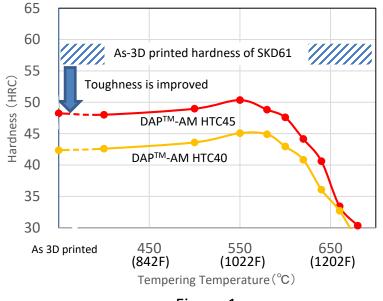


Figure.1 Correlation of the hardness between as 3D printed and tempered after 3D printed. (Tempering(°C) × 1h] twice) The temperature of base plate is 200°C (392F)

DAIDO STEEL CO., LTD.

DAP[™]-AM HTC series can cool molds efficiently by improving thermal conductivity. They can also reduce thermal stress and prevent heat checking and cracks originating from cooling holes.

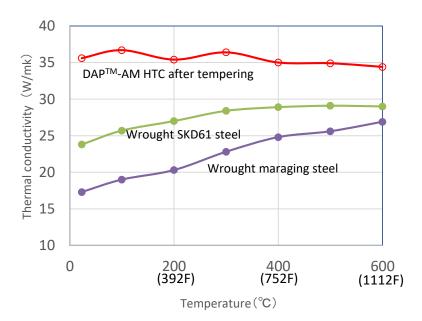
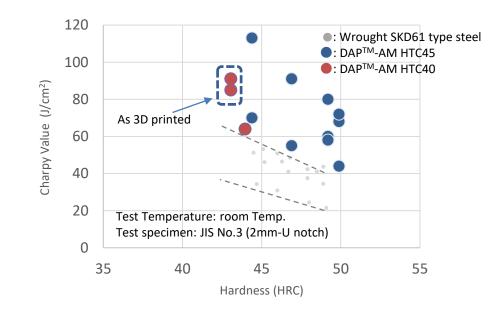
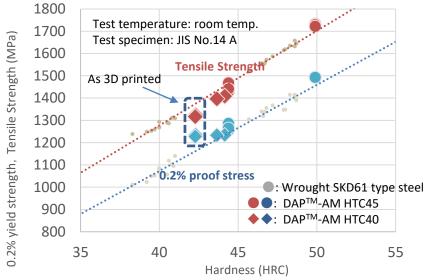



Figure.2 Comparison Table among individual material. (Tested by laser flash method)


Tensile Strength and 0.2% proof stress are equivalent to SKD61 type steel in case of the same hardness

Charpy impact value is much better than that of wrought SKD61 type steel in case of the same hardness by reducing carbon content

Relationship between hardness and impact value of DAP[™]-AM HTC.

Figure.3

Relationship between hardness, 0.2% proof stress, and tensile strength of DAP[™]-AM HTC.

DAIDO STEEL CO., LTD.

 Fatigue Strength of 3D print is lower than that of same type of steel because the density of 3D print is lower than density of steel. Potential for crack.

However, it is possible to increase the fatigue strength of HTC by optimizing the printing parameters.
 (Skill of printer)

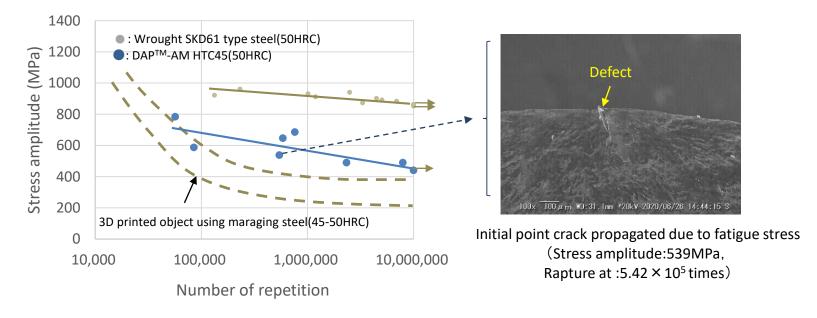
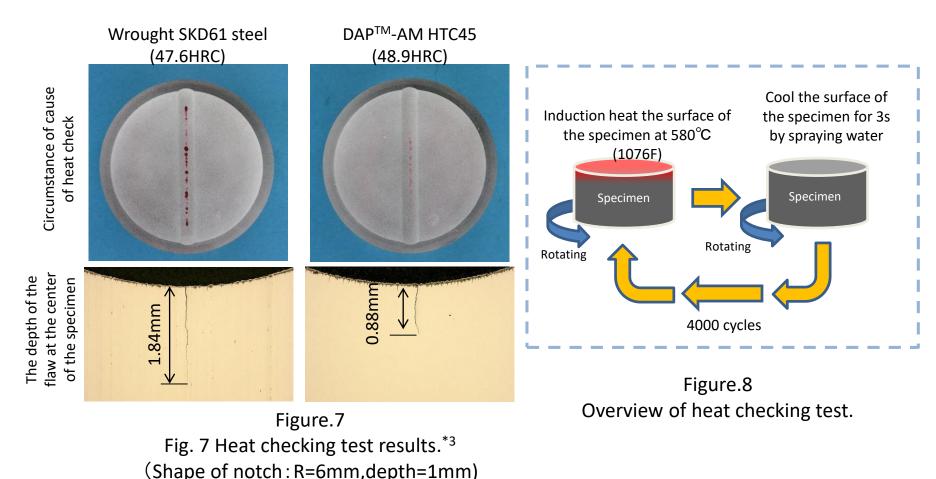


Figure.5 Fatigue strength and typical fatigue fracture surface of DAP[™]-AM HTC.


Table.1

Expected improvement by increasing thermal conductivity compared to that of maraging Steel Calculated by FEM analysis.

Calculated conter	nt	Result	Expected improvement
Reduction of the max temp (Surface of mold)	. on point A	-17°C (-62F)	Restrain mold from seizing. Improving cycle time.
Stress amplitude on point B (surface of cooling line)		-10%	Prolonging die life by improving cracking from cooling lines.
Melted aluminum 650°C (1202F) 6mm A 6mm A 6mm A 12mm 12mm 12mm 12mm Figure Figure Figure FEM analysis model	1202F 212F ure.6 and thermal H	- 0.5sec - 3sec - 1.5se	 Improved thermal conductivity can keep the mold temp. lower and prevent casted aluminum product from seizing. Better thermal conductivity contributes to prevention of cracks from cooling lines by reducing any stresses on the surface of it. ↓ You can prolong mold life as the above.

DAIDO STEEL CO., LTD.

DAPTM-AM HTC has high thermal conductivity, which results in lower thermal stress and reduced heat checking in comparison to SKD61 under the same thermal history.

*3 All the test results of tensile strength, Charpy impact value, fatigue strength, and heat check are carried out with the material 3D printed in accordance with the original recipe of Mitsubishi Corporation Technos.

Stipulations for 3D printing

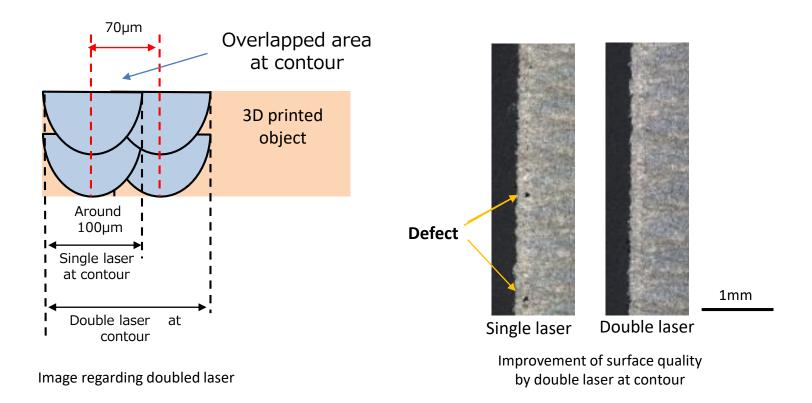
The stipulations shown on table.2 is the condition established with the equipment produced by concept laser company (under GE).

Please feel free to ask Daido's powder metal department about the stipulation if you use different equipment.

Position		Laser output (W)	Laser spot (µm)	Scan Speed (mm/s)	Hatching range (mm)	Thickness of lamination (μm)
Product	Inside part	300	180	600	0.13	50
	Outline part	150	100	500	_	50
Support part		150	100	700	—	50

Table.2 Recommended stipulation for 3D printing^{*4}

We recommend

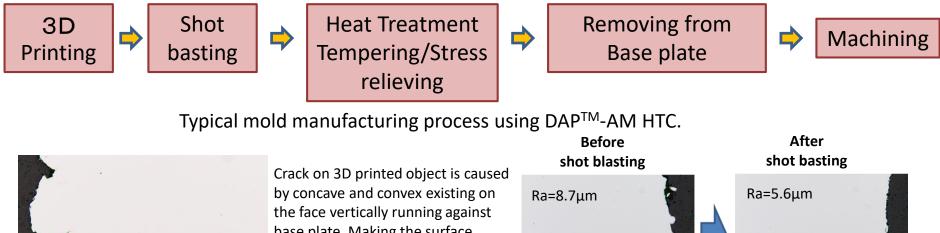

- Chess board type for laser scanning.
- •200°C (392F) temperature for base plate.

*4 Recommendations are for reference only and do not guarantee the quality of mechanical property and fatigue strength.

Condition of 3D printing for contour part

DAIDO STEEL CO., LTD.

You can reduce a risk of cracks existing between contour and inside of 3D printed object by hitting laser twice so that the both tiers overlap in 70µm.



Mold manufacturing process using DAP[™]-AM HTC

DAPTM-AM HTC can be quench-hardened during 3D printing.

In order to prevent cracking and deterioration of toughness caused by secondary hardening during tempering, the surface of 3D printed product should be smoothed, and then tempering should be carried out to adjust the hardness or stress-relief annealing is performed.

Distortion after removal from the base plate is reduced if heat treating is performed without detaching it form the base plate.

200um

base plate. Making the surface smooth by shop peening contributes to dramatically decreasing a risk that crack happens.

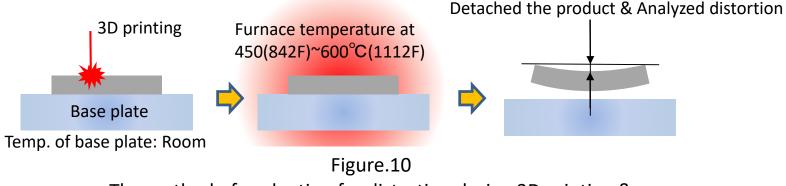
Comparison of surface roughness between before and after shot blasting

200µm

3D printed object

Smoothing the surface perpendicular to the base plate by shot blasting.

DAIDO STEEL GROUP **Beyond the Special**


Initial cracks caused by tempering after 3D printing.

Base plate

Distortion during 3D printing & heat treatment for stress relief

Distortion will occur by heat affect during 3D printing. Therefore, we recommend tempering at more than 550°C (1022F) to relieve the stress generated when 3D printing. This tempering process covers the process to adjust the hardness.

The method of evaluation for distortion during 3D printing & the stipulation of heat treatment for stress relief.

Table.3 Stipulations for Heat Treatment & amount of distortion.

Figure. 11 Appearance of specimen. (DAPTM-AM HTC40: 15W × 17H × 150Lmm)

DAIDO STEEL CO., LTD.

Heat Treatment	Distortion		
As 3D printed	0.24mm		
450°C(842F) × 1h	0.22mm		
500°C(932F) × 1h	0.22mm		
550°C(1022F) × 1h	0.12mm		
600°C(1112F) × 1h	0.15mm		

DAIDO STEEL GROUP Beyond the Special

Summary

DAP[™]-AM Series, DAP[™]-AM HTC45 and DAP[™]-AM HTC40 · · ·

- Thermal conductivity of DAP[™]-AM is 2X better than maraging steel ,and it makes mold cooling easier and contributes to improvement of mold life by prevent cooling lines from cracking.
- Reduced occurrence of cracks when controlling the max hardness as 3D printed.
- Mechanical properties are equal or better than SKD61, except fatigue strength.
- Please pay attention to fatigue strength because the property is inclined to be lower than that of "actual steel" due to the defect during 3D printing.
- You can reduce the stress generated during 3D print by carrying out tempering at over 550°C(1022F).
- There is a possibility that crack occurs from concave and convex on 3D printed object's surface by low toughness due to secondary hardening after tempering. In this case, removing those concave and convex areas by shot peening after 3D printing to make the surface flat contributes to preventing the crack.